Suzhou Electric Appliance Research Institute
期刊號: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁 >> 文章檢索 >> 往年索引

車網(wǎng)互動(V2G)關(guān)鍵技術(shù)研究進(jìn)展

來源:電工電氣發(fā)布時間:2025-08-22 15:22 瀏覽次數(shù):1

車網(wǎng)互動(V2G)關(guān)鍵技術(shù)研究進(jìn)展

趙健
(中國電力工程顧問集團(tuán)有限公司中電儲能工程技術(shù)研究院,上海 200333)
 
    摘 要:車網(wǎng)互動(V2G)技術(shù)作為新型電力系統(tǒng)的重要組成要素,構(gòu)建了電動汽車與電網(wǎng)之間的雙向能量交換體系。結(jié)合國內(nèi)外 V2G 技術(shù)應(yīng)用實(shí)例,梳理了 V2G 技術(shù)的實(shí)現(xiàn)方式與系統(tǒng)架構(gòu),介紹了智能雙向充電技術(shù)、通信協(xié)議及控制策略、供需匹配及調(diào)度技術(shù)、電池退化與壽命管理等關(guān)鍵技術(shù)的研究進(jìn)展,分析了 V2G 技術(shù)潛在的研究方向和發(fā)展趨勢。提出深入研究 V2G 技術(shù)的實(shí)現(xiàn)方式、系統(tǒng)架構(gòu)和關(guān)鍵技術(shù),對于推動能源與交通領(lǐng)域的深度融合,構(gòu)建可持續(xù)發(fā)展的能源-交通體系具有重要的理論和現(xiàn)實(shí)意義。
    關(guān)鍵詞: 車網(wǎng)互動(V2G) ;電動汽車;雙向充電;邊緣控制;負(fù)荷預(yù)測;電池退化;壽命管理
    中圖分類號:TM910.6 ;U469.72     文獻(xiàn)標(biāo)識碼:A     文章編號:1007-3175(2025)08-0001-07
 
Research Progress on Key Technologies of Vehicle-to-Grid
 
ZHAO Jian
(Engineering Technology Institute for Energy Storage of China Power Engineering Consulting Group Co., Ltd, Shanghai 200333, China)
 
    Abstract: Vehicle-to-grid(V2G) technology, recognized as a critical component of new power systems, establishes a bidirectional energy exchange infrastructure between electric vehicles(EVs) and electrical grids. Based on the application examples of V2G technology at home and abroad, this paper sorts out the implementation methods and system architecture of V2G technology, introduces the research progress of key technologies such as intelligent bidirectional charging technology, communication protocols and control strategies, supply and demand matching and scheduling technology, battery degradation and life management, and analyzes the potential research directions and development trends of V2G technology. Proposing in-depth research on the implementation methods, system architecture and key technologies of V2G technology is of great theoretical and practical significance for promoting the deep integration of the energy and transportation fields and building a sustainable energy-transportation system.
    Key words: vehicle-to-grid; electric vehicle; bidirectional charging; edge control; load forecasting; battery degradation; life management
 
參考文獻(xiàn)
[1] 深圳特區(qū)報. 我市啟動全國最大規(guī)模車網(wǎng)互動實(shí)測[EB/OL] . (2025-03-31) [2025-05-12] . https://www.sz.gov.cn/cn/xxgk/zfxxgj/zwdt/content/post_12097412.html.
[2] 朱心月,李炳華,王成,等. 電動汽車 V2G 關(guān)鍵技術(shù)的研究[J]. 電氣應(yīng)用,2021,40(4) :36-43.
[3] 上海市發(fā)展和改革委員會. 關(guān)于進(jìn)一步完善我市分時電價機(jī)制有關(guān)事項(xiàng)的通知[EB/OL] . (2022-12-16)[2025-05-12].https://www.shanghai.gov.cn/gwk/search/content/e2652e3ab7ee49438d6e82af8880b160.
[4] 石雪倩,瞿仕波,廖偉雄. 新型能源結(jié)構(gòu)下 V2G 的研究綜述[J]. 中國科技縱橫,2024(16) :37-39.
[5] ZECCHINO A, PROSTEJOVSKY A M, ZIRAS C, et al.Large-Scale Provision of Frequency Control Via V2G: The Bornholm Power System Case[J].Electric Power Systems Research,2019,170 :25-34.
[6] REVANKAR S R, KALKHAMBKAR V N.Grid integration of battery swapping station:A review[J].Journal of Energy Storage,2021,41 :102937.
[7] DU P, LIU T, CHEN T, et al.Enhancing green mobility through vehicle-to-grid technology:Potential,technological barriers,and policy implications[J].Energy & Environmental Science,2025,18(10) :4496-4520.
[8] KILIC A.TLS-Handshake for Plug and Charge in Vehicular Communications[J].Computer Networks,2024,243 :110281.
[9] 黃珍瑤,程諾,江岳文. 考慮 EV 調(diào)峰需求響應(yīng)可靠性的 V2G 聚合商多時間尺度調(diào)度策略[J] . 高電壓技術(shù),2025,51(1) :401-411.
[10] 毛玲,張鐘浩,趙晉斌,等. 車-樁-網(wǎng)交融技術(shù)研究現(xiàn)狀及展望[J]. 電工技術(shù)學(xué)報,2022,37(24) :6357-6371.
[11] 魏玲瓊,陳亦文,文翌鋮,等. 關(guān)于電動汽車雙向車載充電器的分析綜述[J]. 電氣開關(guān),2024(2) :17-23.
[12] ZHOU M , YU L , WANG H . A SiC-Based Highly Integrated Bidirectional AC/DC Converter for PEV Charging Applications[C]//2021 IEEE 1st International Power Electronics and Application Symposium,2021.
[13] SARNAGO H, LUCIA O, CHHAWCHHARIA S, et al.Novel bidirectional universal 1-phase/3-phase-input unity power factor differential AC/DC converter[J].Electronics Letters,2023,59(13) :1-10.
[14] XIAO L, RUAN X.The Bidirectional Four-Switch Buck-Boost Converter with PWM Plus Phase-Shift Control[C]//2024 IEEE 10th International Power Electronics and Motion Control Conference, 2024.
[15] QI Y, LIU X, LI W, et al.Decentralized Control for a Multiactive Bridge Converter[J].IEEE Transactions on Industrial Electronics,2023,70(11) :11412-11421.
[16] FILSOOF K, LEHN P W.A Bidirectional Modular Multilevel DC-DC Converter of Triangular Structure [J] . IEEE Transactions on Power Electronics,2015,30(1) :54-64.
[17] LIU L, TANG J, YANG S, et al.An Ultra-High Voltage AC/DC Isolated Matrix Converter Applied to V2G Electric Vehicle Charging Piles[J].International Journal of Circuit Theory and Applications,2024(10) :732-754.
[18] KUMAR J, SAMANTA S.A Single-Stage Universal Input Wireless Inductive Power Transfer System with V2G Capability[J].IEEE Journal of Emerging and Selected Topics in Industrial Electronics,2024,5(3) :1017-1029.
[19] KAULURI S , DAMARLA I , SWATHI G , et al.Implementation of Bi-Directional Converter for V2G and G2V Hybrid EV Chargers[C]//2024 2nd International Conference on Cyber Physical Systems,Power Electronics and Electric Vehicles,2024.
[20] WU X, XIAO J, MO Y, et al.Research on Bidirectional Dynamic Wireless Charging System Based on Active Disturbance Rejection Control Strategy[C]//2024 IEEE 6th International Conference on Civil Aviation Safety and Information Technology,2024.
[21] KOHLER S, BIRNBACH S, BAKER R, et al.On the Security of the Wireless Electric Vehicle Charging Communication[C]//2022 IEEE International Conference on Communications,Control,and Computing Technologies for Smart Grids,2022.
[22] WILLRETT U.Standards for Implementing Smart Charging[J].MTZ Worldwide,2020,81(12) :62-65.
[23] WAN M, YU H, HUO Y, et al.Feasibility and Challenges for Vehicle-to-Grid in Electricity Market:A Review[J].Energies,2024,17(3) :1-23.
[24] SONG N O, KWAK B J.International Standard Trend of Vehicle to Grid(V2G) Communication Interface for Wireless Communication and RPT[C]//2019 IEEE Transportation Electrification Conference and Expo, Asia-Pacific,2019.
[25] KIRCHNER S R.OCPP Interoperability: A Unified Future of Charging[J].World Electric Vehicle Journal,2024,15(5) :1-12.
[26] HASAN M K, HABIB A A, SHUKUR Z, et al.Review on cyber-physical and cyber-security system in smart grid: Standards, protocols, constraints,and recommendations[J].Journal of Network and Computer Applications,2023,209 :103540.
[27] 張元星,刁曉虹,李濤永,等. 全球車網(wǎng)互動標(biāo)準(zhǔn)進(jìn)展研究及相關(guān)建議[J] . 電力信息與通信技術(shù),2023,21(2) :13-24.
[28] HAN H, LV Z, HUANG D, et al.Research on charge and discharge power tracking control for V2G system[C]//2017 IEEE 2nd Information Technology,Networking,Electronic and Automation Control Conference,2017.
[29] FAN P, YANG J, KE S, et al.A Multilayer Voltage Intelligent Control Strategy for Distribution Networks with V2G and Power Energy Production-Consumption Units[J].International Journal of Electrical Power & Energy Systems,2024,159:110055.
[30] YU S, PARK K.PUF-Based Robust and Anonymous Authentication and Key Establishment Scheme for V2G Networks[J].IEEE Internet of Things Journal,2024,11(9) :15450-15464.
[31] SHANG Y , LI Z , SHAO Z , et al . Secure and Efficient V2G Scheme Through Edge Computing and Federated Learning[C]//2022 4th International Conference on Smart Power & Internet Energy Systems,2022.
[32] 蔡黎,葛棚丹,代妮娜,等. 電動汽車入網(wǎng)負(fù)荷預(yù)測及其與電網(wǎng)互動研究進(jìn)展綜述[J] . 智慧電力,2022,50(7) :96-103.
[33] ZHANG T, HUANG Y, LIAO H, et al.A hybrid electric vehicle load classification and forecasting approach based on GBDT algorithm and temporal convolutional network[J].Applied Energy,2023,351 :121768.
[34] WANG J , ZHANG L , LIU Z , et al . A novel Decomposition-ensemble forecasting system for dynamic dispatching of smart grid with sub-model selection and intelligent optimization[J].Expert Systems with Applications, 2022,201 :117201.
[35] PALANIYAPPAN B, VINOPRABA T, SENTHIL K R.Dynamic pricing for load shifting: Reducing electric vehicle charging impacts on the grid through machine learning-based demand response[J].Sustainable Cities and Society,2024,103:105256.
[36] LU G, ZHANG G, ZHANG J, et al.Impact of Electric Vehicles Access to Distribution Network under V2G Mode[C]//2023 7th International Conference on Smart Grid and Smart Cities, 2023.
[37] LIU Y.Bi-Directional Optimization of V2G Strategy Based on Multi-Objective Optimization:Balancing Grid Load and Reducing Electric Vehicle Charging Costs[J].Science and Technology of Engineering,Chemistry and Environmental Protection,2024,1(7) :1-6.
[38] GAREWAL I K, JHA S R, ERANDE P S, et al.Blockchain-Based Smart Contracts for Decentralized Vehicle-to-Grid(V2G) Load Management[C]//2024 4th International Conference on Ubiquitous Computing
and Intelligent Information Systems, 2024.
[39] TAN X, QU G, SUN B, et al.Optimal scheduling of battery charging station serving electric vehicles based on battery swapping[J].IEEE Transactions on Smart Grid,2019, 10(2) :1372-134.
[40] 楊曉東,任帥杰,張有兵,等. 電動汽車可調(diào)度能力模型與日內(nèi)優(yōu)先調(diào)度策略[J] . 電力系統(tǒng)自動化,2017,41(2) :84-93.
[41] 王海鑫,袁佳慧,陳哲,等. 智慧城市車-站-網(wǎng)一體化運(yùn)行關(guān)鍵技術(shù)研究綜述及展望[J] . 電工技術(shù)學(xué)報,2022, 37(1) :112-132.
[42] VARSHOSAZ F, MOAZZAMI M, FANI B, et al.Day-aheadcapacity estimation and power management of a charging station based on queuing theory[J].IEEE Transactions on Industrial Informatics,2019,15(10) :5561-5574.
[43] 吳洲洋,艾欣,胡俊杰. 電動汽車聚合商參與調(diào)頻備用的調(diào)度方法與收益分成機(jī)制[J] . 電網(wǎng)技術(shù),2021,45(3) :1041-1049.
[44] XU X , LI K , WANG F , et al . Evaluating multitimescale response capability of EV aggregator considering users’ willingness[J].IEEE Transactions on Industry Applications,2021,57(4) :3366-3376.
[45] LI G, NING W.Bi-Directional Optimal Scheduling of Electric Vehicles Based on V2G Technology[J].International Journal of Frontiers in Engineering Technology,2024,6(4) :47-52.
[46] 趙玉,徐天奇,李琰,等. 基于分時電價的電動汽車調(diào)度策略研究[J] . 電力系統(tǒng)保護(hù)與控制,2020,48(11) :92-101.
[47] 王晞,汪偉,王海燕,等. 計及用戶電池?fù)p耗的電動汽車分布式兩階段調(diào)度策略[J] . 電測與儀表,2022,59(1) :120-126.
[48] 鄭偉,張樂,張建軍,等. 基于虛擬同步的 V2G 調(diào)度控制策略[J]. 南方能源建設(shè),2025,12(2) :116-127.
[49] XU X, HAN X, LU L, et al.Challenges and opportnuities toward long-life lithium-ion batteries[J].Journal of Power Sources, 2024,603 :234445.
[50] HUANG Q, ZHANG X, WU F, et al.Degradation of Ni-rich cathode materials:A multiple fields coupling with negative feedback Process[J].Energy Storage Materials,2023,63 :103050.
[51] QU J , JIANG Z , ZHANG J . Investigation on Lithium-ion battery degradation induced by combined effect of current rate and operating temperature during fast charging[J].Journal of Energy Storage,2022,52 :104811.
[52] DUBATTY M, BAURE G, DEVIE A.Durability and Reliability of EV Batteries under Electric Utility Grid Operations : Path Dependence of Battery Degradation[J].Journal of The Electrochemical Society,2018,165(5) :773-783.
[53] LIN X, LI Y, WU W, et al. Advances on two-phase heat transfer for lithium-ion battery thermal management[J].Renewable and Sustainable Energy Reviews,2024,189 :114052.