參考文獻(xiàn)
[1] 劉穎明,趙哲,王曉東,等. 考慮機(jī)組疲勞載荷的風(fēng)電集群有功功率分配方法[J] . 太陽能學(xué)報(bào),2021,42(5) :430-436.
[2] 武曉冬,席鵬輝,趙錕,等. 基于疲勞分布的風(fēng)電場有功優(yōu)化調(diào)度策略[J] . 科學(xué)技術(shù)與工程,2024,24(22) :9400-9407.
[3] 吳云玉. 基于生物質(zhì)固體成型機(jī)理研究的環(huán)模疲勞壽命分析[D]. 濟(jì)南:山東大學(xué),2010.
[4] 徐超,馬瑤瑤,黃玉玲,等. 基于反相積分峰值檢測法的高頻信號(hào) AGC 系統(tǒng)[J] . 儀表技術(shù)與傳感器,2023(1) :65-69.
[5] 伍凌云,何笠,楊可,等. 基于特高壓和超高壓直流互聯(lián)的送端電網(wǎng) AGC 系統(tǒng)控制策略[J]. 電力自動(dòng)化設(shè)備,2021,41(8) :183-188.
[6] 咸博. 考慮疲勞載荷分布的海上風(fēng)電機(jī)組出力優(yōu)化控制[J]. 機(jī)械管理開發(fā),2024,39(6) :167-169.
[7] 劉建爽,李鋼強(qiáng),劉祥銀,等. 基于扇區(qū)載荷的風(fēng)電機(jī)組塔筒焊縫疲勞強(qiáng)度分析[J]. 風(fēng)能,2020(8) :66-70.
[8] 潘沈愷,高丙團(tuán),毛永恒,等. 考慮機(jī)組疲勞載荷的風(fēng)電場快速有功功率分配方法[J] . 電力系統(tǒng)自動(dòng)化,2024,48(15) :112-121.
[9] YAO Qi, HU Yang, ZHAO Tianyang, et al.Fatigue load suppression during active power control process in wind farm using dynamic-local-reference DMPC[J].Renewable Energy,2022,183 :423-434.
[10] 史蒂文·凱. 統(tǒng)計(jì)信號(hào)處理基礎(chǔ) 第 1 卷 估計(jì)理論[M].北京:世界圖書出版有限公司北京分公司,2022.
[11] SHANG Zhihao, HE Zhaoshuang, YAO Chen, et al.Short-term wind speed forecasting system based on multivariate time series and multi-objective optimization[J].Energy,2022,238 :122024.
[12] PANG Yong, SHI Maolin, ZHANG Liyong, et al.A multivariate time series segmentation algorithm for analyzing the operating statuses of tunnel boring machines[J].Knowledge-Based Systems,2022,242 :108362.
[13] 金秋霞,彭鵬,孫萍玲,等. 考慮噪聲影響的風(fēng)電場功率分配優(yōu)化模型[J] . 太陽能學(xué)報(bào),2023,44(4) :115-124.
[14] LIU Ge, LIU Jun, LIU Andong.Mitigating subsynchronous oscillation using intelligent damping control of DFIG based on improved TD3 algorithm with knowledge fusion[J].Scientific Reports,2024,14(1) :14692.
[15] BACH Francis. Sum-of-squares relaxations for polynomial min-max problems over simple sets[J].Mathematical Programming,2025,209 :475-501.
[16] 祁忠勇,李威錆,林家祥,等. 信號(hào)處理與通信中的凸優(yōu)化:從基礎(chǔ)到應(yīng)用[M]. 北京:電子工業(yè)出版社,2020.
[17] MIKHAIL Moklyachuk.Convex Optimization: Introductory Course[M].Hoboken :Wiley Online Library,2021.
[18] ZHANG Hengmin, GAO Junbin, QIAN Jianjun, et al.Linear Regression Problem Relaxations Solved by Nonconvex ADMM with Convergence Analysis[J].IEEE Transactions on Circuits and Systems for Video Technology,2024,34(2) :828-838.