Suzhou Electric Appliance Research Institute
期刊號: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁 >> 文章檢索 >> 文章瀏覽排名

基于VMD-SGWO多模型優(yōu)化的短期電力負荷預測

來源:電工電氣發(fā)布時間:2025-07-24 15:24 瀏覽次數(shù):10

基于VMD-SGWO多模型優(yōu)化的短期電力負荷預測

王海文,譚愛國,彭賽,王龍,田相鵬,廖紅華,鐘建偉
(湖北民族大學 智能科學與工程學院,湖北 恩施 445000)
 
    摘 要:針對歷史負荷數(shù)據的非線性、波動性和數(shù)據特征提取不充分所導致的短期電力負荷預測精度不高的問題,提出了基于 VMD-SGWO 多模型優(yōu)化的短期電力負荷預測模型。采用了變分模態(tài)分解(VMD)方法將歷史負荷數(shù)據分解成 5 個模態(tài)分量以及殘差序列;使用 Sine 混沌映射對灰狼優(yōu)化算法(GWO)進行改進,得到改進的灰狼優(yōu)化算法(SGWO),并針對不同模態(tài)對輕量級梯度提升機(LightGBM)、支持向量回歸(SVR)、極限梯度提升機(XGBoost)模型進行參數(shù)尋優(yōu),使用尋優(yōu)后的模型分別對不同模態(tài)分量進行預測,將預測結果進行重構優(yōu)化獲得最終的預測結果。實驗結果顯示,VMD、SGWO 以及多模型協(xié)同預測方法能夠有效提升短期電力負荷預測精度,將基于 VMD 分解多模型優(yōu)化算法的短期電力負荷預測結果與 LightGBM、SVR、XGBoost、時間卷積網絡(TCN)、門控循環(huán)單元(GRU)以及長短期記憶神經網絡(LSTM)進行對比,均方根誤差分別降低了86.25%、82.68%、87.29%、86.30%、89.78% 和84.79%,基于VMDSGWO多模型優(yōu)化明顯提升了預測精度。
    關鍵詞: 短期電力負荷預測;變分模態(tài)分解;灰狼優(yōu)化算法;多模型優(yōu)化
    中圖分類號:TM715     文獻標識碼:A     文章編號:1007-3175(2025)07-0022-07
 
Short-Term Power Load Forecasting Based on VMD-SGWO
Multi-Model Optimization
 
WANG Hai-wen, TAN Ai-guo, PENG Sai, WANG Long, TIAN Xiang-peng, LIAO Hong-hua, ZHONG Jian-wei
(College of Intelligent Systems Science and Engineering, Hubei Minzu University, Enshi 445000, China)
 
    Abstract: To address the issue of low accuracy in short-term power load forecasting caused by the nonlinearity, volatility, and inadequate feature extraction of historical load data, a short-term power load forecasting model based on VMD-SGWO multi-model optimization was proposed. Firstly, the variational mode decomposition (VMD) method was employed to decompose the historical load data into five modal components and a residual sequence. Then, the Sine chaotic mapping was used to improve the grey wolf optimizer (GWO), resulting in the sine-enhanced grey wolf optimizer (SGWO). This improved algorithm was applied to optimize the parameters of the light gradient boosting machine (LightGBM), support vector regression (SVR), and extreme gradient boosting (XGBoost) models for different modals. Subsequently,the optimized models were used to predict the different modal components separately. Finally, the prediction results were reconstructed and optimized to obtain the final forecast. Experiments demonstrated that VMD, SGWO, and the multi-model collaborative forecasting approach effectively enhanced the accuracy of short-term power load forecasting. The proposed VMD-based multi-model optimization algorithm was compared with LightGBM, SVR, XGBoost, temporal convolutional network (TCN), gated recurrent unit (GRU), and long short-term memory network (LSTM) in terms of short-term power load forecasting results, showing reductions in root mean square error by 86.25%, 82.68%, 87.29%, 86.30%, 89.78%, and 84.79%, respectively, and the prediction accuracy was significantly improved based on VMDSGWO multi-model optimization.
    Key words: short-term power load forecasting; variational mode decomposition; grey wolf optimizer; multi-model optimization
 
參考文獻
[1] 朱莉,高靖凱,朱春強,等. 基于分量感知動態(tài)圖 Transformer 的短期電力負荷預測[J]. 計算機應用研究,2025,42(2) :381-390.
[2] 查瓊睿. 基于智能算法的電力短期負荷預測方法[J] .光源與照明,2023(8) :96-98.
[3] 魏步晗,鮑剛,李振華. 基于支持向量回歸預測模型考慮天氣因素和分時電價因素的短期電力負荷預測[J] .電網與清潔能源,2023,39(11) :9-19.
[4] 張琳,高勝強,宋煜,等. 基于 ALIF-VMD 二次分解的 NGO-CNN-LSTM 電力負荷短期組合預測模型[J]. 科學技術與工程,2025,25(11) :4583-4597.
[5] 陳緯楠,胡志堅,岳菁鵬,等. 基于長短期記憶網絡和 LightGBM 組合模型的短期負荷預測[J]. 電力系統(tǒng)自動化,2021,45(4) :91-97.
[6] 張未,余成波,王士彬,等. 基于 VMD-LSTM-LightGBM 的多特征短期電力負荷預測[J] . 南方電網技術,2023,17(2) :74-81.
[7] 王海文,譚愛國,彭賽,等. 基于 LGWO-XGBoost-LightGBM-GRU 的短期電力負荷預測算法[J]. 湖北民族大學學報(自然科學版),2025,43(1) :73-79.
[8] 肖威,方娜,鄧心. 基于 VMD-LSTM-IPSO-GRU 的電力負荷預測[J] . 科學技術與工程,2024,24(16) :6734-6741.
[9] 王國彬,黃偉,郭汶昇,等. 基于 CEEMDAN-VMD-BiGRU 模型的印刷園區(qū)電力負荷預測[J]. 印刷與數(shù)字媒體技術研究,2024(4) :276-287.
[10] FAYYAZBAKHSH A, KIENBERGER T, WRIENZ V J.Comparative Analysis of Load Profile Forecasting: LSTM, SVR, and Ensemble Approaches for Singular and Cumulative Load Categories[J].Smart Cities,2025,8(2) :65.
[11] ZENG Shuang, LIU Chang, ZHANG Heng, et al.Short-Term Load Forecasting in Power Systems Based on the Prophet-BO-XGBoost Model[J].Energies,2025,18(2) :227.
[12] LIAN Huihui, JI Ying, NIU Menghan, et al.A hybrid load prediction method of office buildings based on physical simulation database and LightGBM algorithm[J].Applied Energy,2025,377(1) :124620.
[13] CHOPRA N, KUMAR G, MEHTA S.Multi-Objective Economic Emission Load Dispatch using Grey Wolf Optimization[J].International Journal of Advanced Engineering Research and Science,2016,3(11) :26-33.