Suzhou Electric Appliance Research Institute
期刊號(hào): CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁(yè) >> 文章檢索 >> 文章瀏覽排名

基于機(jī)器學(xué)習(xí)的緊湊型架空線路脫冰跳躍風(fēng)險(xiǎn)預(yù)測(cè)研究

來源:電工電氣發(fā)布時(shí)間:2025-07-24 11:24 瀏覽次數(shù):10

基于機(jī)器學(xué)習(xí)的緊湊型架空線路脫冰跳躍風(fēng)險(xiǎn)預(yù)測(cè)研究

陳易飛1,王睿君1,張宇1,杜樂1,林杏1,莫姝1,劉子其2, 3,黃歡4
(1 廣東電網(wǎng)有限責(zé)任公司廣州供電局,廣東 廣州 510640;
2 國(guó)網(wǎng)湖南省電力有限公司技術(shù)技能培訓(xùn)中心,湖南 長(zhǎng)沙 410131;
3 長(zhǎng)沙電力職業(yè)技術(shù)學(xué)院 供電服務(wù)系,湖南 長(zhǎng)沙 410131;
4 貴州電網(wǎng)有限責(zé)任公司電力科學(xué)研究院,貴州 貴陽(yáng) 550000)
 
    摘 要:架空線路發(fā)生脫冰跳躍會(huì)導(dǎo)致線間間距減小,甚至?xí)l(fā)生放電事故,影響電網(wǎng)的安全運(yùn)行。對(duì)基于機(jī)器學(xué)習(xí)的緊湊型架空線路脫冰跳躍風(fēng)險(xiǎn)預(yù)測(cè)進(jìn)行研究,提出了一種基于最大跳躍幅值的脫冰線路放電風(fēng)險(xiǎn)評(píng)估流程。以中國(guó)南方地區(qū)某500 kV緊湊型架空線路為例,利用數(shù)值模擬方法得到不同仿真工況下架空線路的最大跳躍幅值,構(gòu)建樣本數(shù)據(jù)集;建立基于 BP 神經(jīng)網(wǎng)絡(luò)的脫冰線路最大跳躍幅值預(yù)測(cè)模型,將線路覆冰厚度、脫冰率、檔距、高差、導(dǎo)線截面積作為輸入,最大跳躍幅值作為輸出,通過機(jī)器學(xué)習(xí)實(shí)現(xiàn)對(duì)脫冰線路最大跳躍幅值的預(yù)測(cè),并結(jié)合所提風(fēng)險(xiǎn)評(píng)估流程,進(jìn)一步實(shí)現(xiàn)對(duì)脫冰線路放電風(fēng)險(xiǎn)的預(yù)測(cè)。基于該緊湊型線路實(shí)際放電案例,驗(yàn)證所提預(yù)測(cè)模型的準(zhǔn)確性,結(jié)果表明:預(yù)測(cè)和仿真得到的最大跳躍幅值的絕對(duì)誤差不超過0.3 m,且預(yù)測(cè)和仿真條件下對(duì)應(yīng)脫冰線路的風(fēng)險(xiǎn)狀態(tài)一致;預(yù)測(cè)風(fēng)險(xiǎn)結(jié)果與實(shí)際脫冰線路放電案例結(jié)果吻合,說明了所提風(fēng)險(xiǎn)預(yù)測(cè)方法可以方便快捷地實(shí)現(xiàn)脫冰線路風(fēng)險(xiǎn)的預(yù)測(cè)。
    關(guān)鍵詞: 覆冰;脫冰跳躍;風(fēng)險(xiǎn)預(yù)測(cè);風(fēng)險(xiǎn)評(píng)估;緊湊型架空線路
    中圖分類號(hào):TM726.3     文獻(xiàn)標(biāo)識(shí)碼:A     文章編號(hào):1007-3175(2025)07-0060-08
 
Study on Risk Prediction of Ice-Shedding Jump for Compact Overhead
Lines Based on Machine Learning
 
CHEN Yi-fei1, WANG Rui-jun1, ZHANG Yu1, DU Le1, LIN Xing1, MO Shu1, LIU Zi-qi2, 3, HUANG Huan4
(1 Guangdong Power Grid Co., Ltd. Guangzhou Power Supply Bureau, Guangzhou 510640, China;
2 Technical Skills Training Center of State Grid Hunan Electric Power Co., Ltd, Changsha 410131, China;
3 Power Supply Service Department, Changsha Electric Power Technical College, Changsha 410131, China;
4 Guizhou Power Grid Co., Ltd. Electric Power Science Research Institute, Guiyang 550000, China)
 
    Abstract: The occurrence of ice-shedding jumps on overhead lines can lead to a reduction in the spacing between lines, and even discharge accidents can occur, affecting the safe operation of the power grid. In this paper, machine learning-based risk prediction of ice-shedding jumps for compact overhead lines is investigated, and a process for assessing the risk of ice-shedding lines discharges based on the maximum jump amplitude is proposed. Taking a 500 kV compact overhead line in southern China as an example, the maximum jump amplitude of the overhead line under different simulation conditions was obtained by numerical simulation method, and the sample dataset was constructed. A prediction model of the maximum jump amplitude of the ice-shedding line based on BP neural network was established, and the ice thickness, ice-shedding rate,pitch, height difference, and cross-sectional area of the wire were taken as inputs, and the maximum jump amplitude was used as the output, and the maximum jump amplitude of the ice-shedding line was predicted through machine learning, and the risk of discharge risk of the ice-shedding line was further predicted by combining the proposed risk assessment process. Based on the actual discharge case of the compact line, the accuracy of the proposed prediction model is verified, and the results show that the absolute error of the maximum jump amplitude obtained by the prediction and simulation is not more than 0.3 m, and the risk state of the corresponding ice-shedding line is consistent under the prediction and simulation conditions. The prediction risk results are consistent with the actual ice-shedding line discharge case results, which indicates that the proposed risk prediction method can easily and quickly realize the risk prediction of ice-shedding lines.
    Key words: icing; ice-shedding jump; risk prediction; risk assessment; compact overhead line
 
參考文獻(xiàn)
[1] 于幼文,金永純,高毅. 我國(guó) 500 kV 緊湊型輸電線路的研究與應(yīng)用[J]. 電力設(shè)備,2004,5(6) : 9-12.
[2] 習(xí)近平向《聯(lián)合國(guó)氣候變化框架公約》第二十六次締約方大會(huì)世界領(lǐng)導(dǎo)人峰會(huì)發(fā)表書面致辭[N] . 人民日報(bào),2021-11-02(1).
[3] 張行,王逸飛,何迪,等. 電網(wǎng)防災(zāi)減災(zāi)現(xiàn)狀分析及建議[J]. 電網(wǎng)技術(shù),2016,40(9) :2838-2844.
[4] YANG Lin, CHEN Yifei, MEI Lulu, et al.Prediction Method for Response Characteristics Parameters of Isolated-Span Overhead Lines after Ice-Shedding Based on Finite Element Simulation and Machine Learning[J].Electric Power Systems Research,2024,229 :110141.
[5] YANG L, CHEN Y F, HAO Y P, et al.Detection Method for Equivalent Ice Thickness of 500 kV Overhead Lines Based on Axial Tension Measurement and Its Application [J].IEEE Transactions Instrumentation Measurement,2023,72 :1-11.
[6] 陳易飛,陽(yáng)林,郝艷捧,等. 冰風(fēng)荷載作用下架空線路脫冰跳躍風(fēng)險(xiǎn)評(píng)估方法[J] . 電力大數(shù)據(jù),2024,27(1) :1-9.
[7] MORGAN V T, SWIFT D A.Jump height of overheadline conductors after the sudden release of ice loads[J].Proceedings of the Institution of Electrical Engineers,1964,111(10) :1736-1746.
[8] JAMALEDDING A, MCCLURE G, ROUSSELET J, et al.Simulation of ice-shedding on electrical transmission lines using ADINA[J].Computers and Structures,1993,47(4/5) :523-536.
[9] VAN DYKE P, LANEVILLE A.Galloping of a single conductor covered with a D-section on a highvoltage overhead test line[J].Journal of Wind Engineering and Industrial Aerodynamics,2008,96(6/7) :1141-1151.
[10] 陳勇,胡偉,王黎明,等. 覆冰導(dǎo)線脫冰跳躍特性研究[J]. 中國(guó)電機(jī)工程學(xué)報(bào),2009,29(28) :115-121.
[11] 謝獻(xiàn)忠,李丹,黃偉,等. 塔線體系脫冰跳躍動(dòng)力特性實(shí)驗(yàn)研究[J]. 應(yīng)用力學(xué)學(xué)報(bào),2017,34(5) :855-861.
[12] HUANG Guizao, YAN Bo, WEN Nan, et al.Study on jump height of transmission lines after ice-shedding by reduced-scale modeling test[J].Cold Regions Science and Technology,2019,165 :102781.
[13] KOLLAR L E, FARZANEH M, VAN DYKE P.Modeling Ice Shedding Propagation on Transmission Lines with or without Interphase Spacers[J].IEEE Transactions on Power Delivery,2013,28(1) :261-267.
[14] YAN Bo, CHEN Kequan, GUO Yueming, et al.Numerical simulation study on jump height of iced transmission lines after ice shedding[J].IEEE Transactions on Power Delivery,2013,28(1) :216-225.
[15] WU Chuan, YAN Bo, ZHANG Liang, et.al.A method to calculate jump height of iced transmission lines after ice-shedding[J].Cold Regions Science and Technology,2016,125 :40-47.
[16] 張殿生. 電力工程高低壓送電線路設(shè)計(jì)手冊(cè)[M]. 北京:中國(guó)電力出版社,2005.
[17] RADMER D T, KUNTZ P A, CHRISTIE R D, et al.Predicting vegetation-related failure rates for overhead distribution feeders[J].IEEE Transactions on Power Delivery,2002,17(4) :1170-1175.
[18] 廖崢,熊小伏,李新,等. 基于 BP 神經(jīng)網(wǎng)絡(luò)的輸電線路舞動(dòng)預(yù)警方法[J] . 電力系統(tǒng)保護(hù)與控制,2017,45(19) :154-161.
[19] WANG Jian, XIONG Xiaofu, ZHOU Ning, et al.Early warning method for transmission line galloping based on SVM and AdaBoost bi-level classfiers[J].IET Generation, Transmission &Distribution,2016,10(14) :3499-3507.
[20] YUAN S, QUIRING S M, ZHU L, et al.Development of a typhoon power outage model in Guangdong,China[J].International Journal of Electrical Power & Energy Systems,2020,117 :105711.
[21] 鄭凌銘,舒勝文,陳彬,等. 強(qiáng)臺(tái)風(fēng)環(huán)境下基于格點(diǎn)化和支持向量機(jī)的 10 kV 桿塔受損量預(yù)測(cè)方法[J]. 高電壓技術(shù),2020,46(1) :42-50.
[22] 謝云云, 薛禹勝, 文福拴, 等. 冰災(zāi)對(duì)輸電線故障率影響的時(shí)空評(píng)估[J] . 電力系統(tǒng)自動(dòng)化,2013,37(18) :32-41.
[23] 謝云云,薛禹勝,王昊昊,等. 電網(wǎng)雷擊故障概率的時(shí)空在線預(yù)警[J] . 電力系統(tǒng)自動(dòng)化,2013,37(17) :44-51.
[24] 中國(guó)電力企業(yè)聯(lián)合會(huì).110 kV~750 kV 架空輸電線路設(shè)計(jì)規(guī)范:GB 50545—2010[S] . 北京:人民出版社,2010 :109.
[25] WEN Yi, CHEN Yifei, WU Jianrong, et al.Research on Risk Assessment and Suppression Measures for Ice-Shedding on 500 kV Compact Overhead Lines[J].Energies,2022,15(21) :8005.
[26] 邵天曉. 架空送電線路的電線力學(xué)計(jì)算[M]. 北京:中國(guó)電力出版社,2003.
[27] 王斌,李立浧,魏發(fā)生,等. 不均勻覆冰下的架空地線覆冰在線監(jiān)測(cè)力學(xué)計(jì)算模型改進(jìn)[J] . 高電壓技術(shù),2022,48(11) :4538-4545.
[28] HAYKIN S.Neural Networks: A Comprehensive Foundation[M].New Jersey :Prentice Hall PTR,1998.
[29] 陸益錳, 安旭文, 劉智勇, 等. 輸電線路覆冰厚度的概率分布模型比較分析[J] . 四川建筑,2015,35(2) :263-266.